Compositionality Asynchrony
000000000 000

COMP3151/9154

Foundations of Concurrency

Compositionality and Asynchrony

Johannes Aman Pohjola
CSE, UNSW
Term 2 2022

Compositionality Asynchrony
000000000 000

Where we are at

Last lecture, we looked at proof methods for termination.

This lecture, we will conclude our examination of proof methods with compositional
techniques, and asynchronous systems.

Compositionality
000000000

Synchronous Transition Diagrams

Definition
A synchronous transition diagram is a parallel composition Py || ... || P, of n
(sequential) transition diagrams Py, ..., P, called processes.

The processes P;

@ do not share variables
@ communicate along channels C, D, ... connecting processes by way of
e output statements C < e
for sending the value of expression e along channel C

e input statements C = x
for receiving a value along channel C into variable x

Asynchrony
(e]e]e}

Compositionality Asynchrony
000000000 000

Synchronous Transition Diagrams

Definition
A synchronous transition diagram is a parallel composition Py || ... || P, of n
(sequential) transition diagrams Py, ..., P, called processes.

The processes P;

@ do not share variables
@ communicate along channels C, D, ... connecting processes by way of
e output statements C < e
for sending the value of expression e along channel C

e input statements C = x
for receiving a value along channel C into variable x

NB
Today, we will assume that all communication channels are unidirectional, and shared
between at most 2 processes.

Compositionality Asynchrony
000000000 000

Analysis of AFR and L&G

@ Both are only applicable to closed systems.

Compositionality Asynchrony
000000000 000

Analysis of AFR and L&G

@ Both are only applicable to closed systems.

@ So we have to reason about the system as a whole, even including users modelled
as processes.

Compositionality Asynchrony
000000000 000

Analysis of AFR and L&G

@ Both are only applicable to closed systems.

@ So we have to reason about the system as a whole, even including users modelled
as processes.

@ In other words: we can't reason compositionally. Typically, non-compositional
proof methods don't scale, and prevent proof re-use.

Compositionality Asynchrony
0e0000000 000

Quotes on Compositionality

de Roever et al.

A compositional proof method is a method by which the specification of a system can
be inferred from the specifications of its constituents, without additional information
about their internal structure.

Compositionality Asynchrony
0e0000000 000

Quotes on Compositionality

de Roever et al.

A compositional proof method is a method by which the specification of a system can
be inferred from the specifications of its constituents, without additional information
about their internal structure.

F. B. Schneider, 1994
Compositionality is a red herring.

Compositionality
00®000000

One more quote

Lamport (1997) — “Composition: a way to make proofs harder”

Systems are complicated. We master their complexity by building them from simpler
components. This suggests that to master the complexity of reasoning about systems,
we should prove properties of the separate components and then combine those
properties to deduce properties of the entire system. In concurrent systems, the
obvious choice of component is the process. So, compositional reasoning has come to
mean deducing properties of a system from properties of its processes.

| have long felt that this whole approach is rather silly. You don't design a mutual
exclusion algorithm by first designing the individual processes and then hoping that
putting them together guarantees mutual exclusion.

Compositionality Asynchrony
000e00000 000

Compositionally-Inductive Assertion Network

Key Ildea
Handle communication with a special logical variable h, containing the history of all
communication, i.e. a sequence of pairs of channels and messages (C, x). Programs

shouldn’t write to h.

Asynchrony

Compositionality
000

000e00000

Compositionally-Inductive Assertion Network

Key Ildea

Handle communication with a special logical variable h, containing the history of all
communication, i.e. a sequence of pairs of channels and messages (C, x). Programs
shouldn't write to h.

A local assertion network @ is compositionally-inductive for a sequential synchronous
transition diagram P = (L, T,s, t), written P - Q, if

o =QAb = Quofforeach ¢t 25 e T,
o =EQAb = Quo(fol[h« h-(C,e)]), foreach ¢ 2= o1 T
o =QAb = ¥x(Quo(folh« h-(C,x)])), for each ¢ 2= pr e T,

Compositionality Asynchrony
000080000 000

Partial Correctness

Let @ be an assertion network for a process P and Qs and Q; be the assertions at the
start and end states. We have the Basic diagram rule:

PFQ
{Qs} P{Q:}

Compositionality Asynchrony
000080000 000

Partial Correctness

Let @ be an assertion network for a process P and Qs and Q; be the assertions at the
start and end states. We have the Basic diagram rule:

PFQ
{Qs} P{Q:}

We assume the history is empty initially with the Initialization rule:

{¢Ah=e} P{y}
{o} P {}

Compositionality Asynchrony
000000000 000

Partial Correctness

Let @ be an assertion network for a process P and Qs and Q; be the assertions at the
start and end states. We have the Basic diagram rule:

PFQ
{Qs} P{Q:}

We assume the history is empty initially with the Initialization rule:

{¢Ah=e} P{y}
{o} P {}

..the Consequence rule allows pre/post-conditions to be strengthened /weakened::

p=9¢" {¢} P} ' =4
{6} P {v}

Compositionality Asynchrony
000008000 000

Parallel composition rule

Provided 1); only makes assertions about (a) local variables in P;, and (b) the history
that directly involves channels used by P;, we get this compositional Parallel
composition rule:

{91} Pr{vn} {d2} P2 {12}
{61 A g2} Pl P2 {1 Ao}

Observe that we don't need to prove anything like interference freedom or generate a
proof obligation about each possible communication.

Compositionality Asynchrony
000008000 000

Parallel composition rule

Provided 1); only makes assertions about (a) local variables in P;, and (b) the history
that directly involves channels used by P;, we get this compositional Parallel
composition rule:

{91} Pr{vn} {d2} P2 {12}
{61 A g2} Pl P2 {1 Ao}

Observe that we don't need to prove anything like interference freedom or generate a
proof obligation about each possible communication.

Notation
Define h|y as the history h filtered to only contain those pairs (C, x) where C € H. J

Compositionality Asynchrony
000000800 000

Example 2 once more

Compositionality
000000800

Example 2 once more

Asynchrony
000

Compositionality
000000080

Example 2 once more cont’'d

For the two output transitions we need to show

':h’{c}:z’:‘ — h]{c}:(C,l)o[heh-(C,l)ﬂ
= hlie) = (C.1) = hlic) = (C,1)- (C.2) o [h < h-(C,2)]

which is obvious; and for the two input transitions

= h\{c} = = Vx (h\{c} = <C,x)o[[h<—h-<C,x>]])
= hlgcy = (C.x) = Vx 3y (hl{c; =(C,y) - (C,x) o [h+ h-(C,x)])

which also works out nicely.

Asynchrony
000

Compositionality Asynchrony
00000000e 000

Example 2 once more cont’'d
Using the Basic diagram rule we may now deduce
{hlicy =¢} C <=1, C<=2{hjcy =(C.1)-(C,2)}
{hlicy =} C=x;C = x {3y. hljc; = (C,y) - (C,x)}

Compositionality
00000000e

Example 2 once more cont’'d
Using the Basic diagram rule we may now deduce
{hlicy =ct C<= 1L C<=2{hlc; =(C.1)-(C,2)}
{hlicy=¢} C=x;C=x{3y. hljcy = (C,y) - (C,x)}

before applying the parallel composition rule to obtain

{hlicy =} P {hlgcy = (C,1) - (C,2) Ady. hlicy = (C.y) - (C,x)}

Asynchrony
(e]e]e}

Compositionality
00000000e

Example 2 once more cont’'d
Using the Basic diagram rule we may now deduce
{hlicy =ct C<= 1L C<=2{hlc; =(C.1)-(C,2)}
{hlicy=¢} C=x;C=x{3y. hljcy = (C,y) - (C,x)}

before applying the parallel composition rule to obtain

{hlgcy =€} P {hl{cy =(C,1)-(C,2) A3y. hlicy = (C,y) - (C,x)}
which implies (via the rule of consequence):

{h=¢c} P{x=2}

Asynchrony
(e]e]e}

Compositionality
00000000e

Example 2 once more cont’'d
Using the Basic diagram rule we may now deduce
{hlicy =ct C<= 1L C<=2{hlc; =(C.1)-(C,2)}
{hlicy =} C=x; C=x{3y. hlic; = (C,y) - (C,x)}

before applying the parallel composition rule to obtain
{hlicy =} P {hlgcy = (C,1) - (C,2) Ady. hlicy = (C.y) - (C,x)}
which implies (via the rule of consequence):
{h=¢} P {x=2}
and finally the initialisation rule takes us to

{TrUE} P {x =2}

Asynchrony
(e]e]e}

Compositionality Asynchrony
000000000 €00

Asynchrony

Consider a process P that sends a file 2 on the channel C to the process @, which
saves it to b.

alil| # EOF; C <= a[i]; i + i +1 C=blj«j+1
ali] = EOF; C < EOF; i + i +1 j>0Ab[j—1] =EOF

Compositionality Asynchrony
000000000 €00

Asynchrony

Consider a process P that sends a file 2 on the channel C to the process @, which
saves it to b.

alil| # EOF; C <= a[i]; i + i +1 C=blj«j+1
ali] = EOF; C < EOF; i + i +1 j>0Ab[j—1] =EOF

How do we verify this if C is asynchronous?

Compositionality Asynchrony
000000000 (o] Yo)

Convert to Synchronous

ali] # EOF; A < ai]; i i+ 1 B=b[j;j<j+1
() ()
ali] = EOF; A <= EOF;i + i+ 1 j>0Ab[j—1] =EOF

Compositionality Asynchrony
000000000 000

Convert to Synchronous

ali] # EOF; A <= a[il; i i + 1 B=bljljj+1
() ~(»)
ali] = EOF; A <= EOF;i + i+ 1 j>0Ab[j—1] =EOF

A= Xx,g+ q-x

28 q # ¢; B < head(q); g < tail(q)

Compositionality Asynchrony
oo
Compositionally
By adding an extra process with two synchronous channels to explicitly manage the

queue, we convert this asynchronous system to a synchronous one.
We can now use AFR, Levin and Gries or the compositional method.

Compositionality

Compositionally
By adding an extra process with two synchronous channels to explicitly manage the

queue, we convert this asynchronous system to a synchronous one.
We can now use AFR, Levin and Gries or the compositional method. Using the
compositional method, we have the desired postcondition:

Ji. afi] = EOF A a[0...i] = b[0. ..]

Asynchrony
ocoe

Compositionality
000000000

Compositionally
By adding an extra process with two synchronous channels to explicitly manage the
queue, we convert this asynchronous system to a synchronous one.
We can now use AFR, Levin and Gries or the compositional method. Using the
compositional method, we have the desired postcondition:

Ji. a[i] =EOF A a[0...i]=b[0...]]
And the following assertion network:

Qps) = l}\{A}:a[O...i]/\EOFgéa[O...i]

Qpe) = hlgay=al0...i| AEOF ¢ a[0...i — 1] Aali— 1] = EOF
Qgs) = hlgy = b[0...j]

Q(q)) = gy = b[0...j1 Ablj — 1] = EOF

Q(C) = hlgay=hls - q

Proof obligations will be informally described.

Asynchrony
ocoe

Compositionality Asynchrony
000000000 @00

What Now?

If time allows, we'll take a brief detour into the world of process algebra, a high level
formalism for describing concurrent systems.

Either way, we'll then discuss distributed algorithms.

	Compositionality
	Compositionality

	Asynchrony
	

